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This paper is concerned with the numerical approximation of the isothermal Euler equa-
tions for charged particles subject to the Lorentz force (the ‘Euler–Lorentz’ system). When
the magnetic field is large, or equivalently, when the parameter e representing the non-
dimensional ion cyclotron frequency tends to zero, the so-called drift-fluid (or gyro-fluid)
approximation is obtained. In this limit, the parallel motion relative to the magnetic field
direction splits from perpendicular motion and is given implicitly by the constraint of zero
total force along the magnetic field lines. In this paper, we provide a well-posed elliptic
equation for the parallel velocity which in turn allows us to construct an Asymptotic-Pre-
serving (AP) scheme for the Euler–Lorentz system. This scheme gives rise to both a consis-
tent approximation of the Euler–Lorentz model when e is finite and a consistent
approximation of the drift limit when e! 0. Above all, it does not require any constraint
on the space and time-steps related to the small value of e. Numerical results are pre-
sented, which confirm the AP character of the scheme and its Asymptotic Stability.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

This paper is concerned with the construction of a numerical scheme for the system of isothermal Euler equations for
charged particles subject to the Lorentz force (which we will refer to as the Euler–Lorentz system). More precisely, we are
interested in the regime where the inertia terms which balance the pressure and Lorentz forces in the momentum balance
equation are scaled by a small parameter e. The parameter e represents the inverse of the ion gyro-frequency around the
magnetic field axis scaled by a characteristic time of the experiment. When e tends to zero, the so-called drift-fluid or
gyro-fluid regime is reached [21,27].

In the drift-fluid approximation, particles are confined along the magnetic field lines. As a consequence, the dynamics
along the magnetic field lines is much quicker than across it. In the limit e! 0, the parallel motion assumes an instantaneous
equilibrium in which the pressure force equilibrates the electric force. This equilibrium is attained through acoustic waves
propagating at infinite velocity in a similar fashion as what happens in a low Mach number fluid. These acoustic waves adjust
the parallel velocity instantaneously in such a way that this equilibrium is satisfied at all times. In this way, the parallel
velocity plays the role of a Lagrange multiplier of the constraint of zero total aligned force. The first goal of this paper is
. All rights reserved.
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to give an equivalent formulation of the drift-fluid approximation that enables us to calculate this parallel velocity (contrary
to what is sometimes written in the literature [21], it is possible to find such an equation).

The second goal is to design a valid scheme for both regimes e � 1 and e! 0. This scheme gives rise to both a consistent
approximation of the Euler–Lorentz model when e is finite and a consistent approximation of the drift-fluid limit when
e! 0. Above all, it does not require any constraint on the space and time-steps related to the small value of e. This type
of schemes is usually referred to as Asymptotic Preserving schemes (AP).

Asymptotic Preserving schemes have been proposed in a variety of contexts, such as hydrodynamic or diffusion limits of
kinetic model [5,25,26,22,31,4,17], relaxation limits of hyperbolic models [23,24,18], relaxation limits of Complex-Ginzburg–
Landau equations [10], low-Mach number limits of compressible fluid models [9]. In the plasma physics context, these
schemes have appeared in relation with the quasineutral limit of the Euler–Poisson system [6,7,11] or Vlasov–Poisson sys-
tem [8,3].

Such schemes are of great potential interest to the simulation of strongly magnetized plasmas such as those encountered
in space plasmas or in Tokamak devices like ITER. First of all, there are several advantages to using the original Euler–Lor-
entz model instead of the limit drift-fluid model. Indeed, the drift-fluid model is a mathematically complex model: the con-
straint of zero total force makes it a mixed-type model, with certain characteristics of an elliptic problem, like the
incompressible Navier–Stokes equation. Dealing with this constraint is numerically challenging, and is at least as difficult
as dealing with the incompressibility constraint in the Navier–Stokes equation. In the literature, various drift-fluid models
have been proposed on physical grounds [1,2,14–16,19,20,28–30,32,33,35]. However, their relations to the drift-fluid model
which can be derived from the formal asymptotic analysis developed below are unclear. This is why we find preferable to
rely on the original Euler–Lorentz model, in which the momentum conservation equation directly follows from first physical
principles.

Another advantage of AP schemes is their ability to deal equally well with the asymptotic regime e! 0 and the ‘normal’
situation e ¼ Oð1Þ. This is potentially very interesting for situations in which part of the simulation domain reaches the
asymptotic regime and part of it does not. The usual approach for dealing with such occurrences is through multiphysics
domain decomposition: the full Euler–Lorentz model is used in the region where e ¼ Oð1Þ and the drift-fluid limit model
is used where e� 1 (we assume the dimensionless parameter e is computed using local estimates of the magnetic field
strength and can be considered as a function of the space and time coordinates). There are several drawbacks in using this
approach. The first one is the choice of the position of the interface (or cross-talk region), which can influence the outcome of
the simulation. If the interface evolves in time, an algorithm for interface motion has to be devised and some adaptive reme-
shing has to be implemented, which requires heavy code developments and can be quite CPU time consuming. Determining
the right coupling strategy between the two models can also be quite challenging and the outcome of the numerical simu-
lations may also depend on that choice. Because these questions do not have a straightforward answer, multiphysics domain
decomposition strategies often lack robustness and reliability. Here, using the original model with an AP discretization
method everywhere prevents from having to introduce questionable physical artefacts in the model and permits to use
the same code everywhere in both regimes.

The potential application of these methods is the simulation of fluid turbulence in Tokamak plasmas. There has been con-
siderable literature on this problem [1,2,13,14,19,20,35]. The present work is far from being at a comparable development
stage, since the present numerical tests are restricted to given uniform magnetic and electric fields in a two-dimensional
setting. Nonetheless, this is an unavoidable intermediate step to check the performances of the method. The numerical tests
being successful, this approach will soon be extended to an arbitrary given magnetic field and coupled to the dynamics of the
electron fluid through quasineutrality assumptions.

The assumption that the ion fluid is isothermal is only made for simplicity. An energy equation for the ion fluid can be
considered instead. The approach extends easily to this case. We will report on it in future work.

This paper is then organized as follows. The isothermal Euler–Lorentz model in the drift-fluid scaling and the drift-fluid
limit are presented in Section 2. An Asymptotic Preserving time-discretization of the isothermal Euler–Lorentz model in the
drift-fluid scaling and a full discretization of this scheme in a reduced two-dimensional setting are proposed in Section 3.
Numerical results are given in Section 4 and finally, conclusions are given in Section 5.
2. The isothermal Euler–Lorentz model and the drift-fluid limit

2.1. The Euler–Lorentz model

We are concerned with the Euler–Lorentz model describing the isothermal flow of positive ions in a tokamak. In this mod-
el, we neglect the electrons and suppose that the electric and magnetic fields are given. In the drift-fluid asymptotics, we let e
be a typical scaled value of the gyro-period of the particles, i.e. the period of their rotation motion about the magnetic field
axis. The scaled isothermal Euler–Lorentz model takes the form:
@tne þ $ � ðneueÞ ¼ 0; ð2:1Þ
e @tðneueÞ þ $ � ðneue � ueÞ½ � þ T$ne ¼ neðE þ ue � BÞ; ð2:2Þ
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where ne;ue are the density and the velocity of ions, respectively. The quantity T is the ion temperature. Here, the electric
field E and the magnetic field B are assumed to be given functions. The symbol $ is the gradient operator while $� denotes
the divergent operator.

This scaled model is obtained from the unscaled Euler–Lorentz model by introducing characteristic scales for length x0,
time t0, velocity u0, density n0, temperature T0, electric field E0 and magnetic field B0. As usual, we set x0 ¼ u0t0 and the char-
acteristic electric and magnetic fields are assumed to follow the relation E0 ¼ u0B0, so that the gyro-frequency of the ions is
given by x ¼ qB0=m ¼ qE0=ðmu0Þ (where q is the ion electric charge). In doing so, two dimensionless parameters appear, the
Mach number M ¼ u0=cs where cs ¼ ðT0=mÞ1=2 is the sound speed (and m is the ion mass) on the one hand, and the scaled
gyro-period e ¼ m=ðqB0t0Þ. In the drift-fluid asymptotics, we assume that the Mach number and the gyro-period are linked
by M ¼

ffiffiffi
e
p

, which leads to the scaled problem (2.1), (2.2).
The following notations will be useful: the director of the magnetic field is denoted by b ¼ B=B where B is the Euclidean

norm of B.
Any vector quantity v can be split into its parallel (k) and perpendicular (?) parts as follows:
v ¼ vk þ v? ¼ vkbþ v?; vk ¼ v � b; v? ¼ b� ðv � bÞ:
Next, we introduce the parallel gradientrk/ ¼ b � $/ for any scalar function /. The quantityrk/ is a scalar. In the same way,
we also introduce the parallel divergence, given for any vector field v by rk � ðvkÞ ¼ $ � ðvkbÞ. This operator can be related to
the parallel gradient by following equalities:
rk � vk ¼ $ � vk
B

B
� �

¼ Brk
vk
B

� �
; ð2:3Þ
since the magnetic field is a divergence-free vector. We can write $ � v ¼ $ � v? þrk � ðvkÞ. Note thatrk � ðvkÞ is also a scalar.
More generally, we introduce the parallel divergencerk � /, acting on a scalar /, byrk � / ¼ $ � ð/bÞ. The operatorsrk andrk�
are formal adjoints. Let us consider two scalar-valued functions / and w defined on a regular domain X, and let us assume
also that / and w vanish on the boundary @X, for simplicity. We have
Z

X
rkðrk � /Þ
� �

wdx ¼
Z

X
b � $ð$ � ð/bÞÞ½ �wdx ¼ �

Z
X
ð$ � ð/bÞÞð$ � ðwbÞÞdx ¼ �

Z
X
ðrk � /Þðrk � wÞdx:
2.2. The drift-fluid limit

The formal limit e! 0 in the isothermal Euler–Lorentz model (2.1), (2.2) leads to the so-called isothermal drift-fluid
model
@tnþ $ � ðnuÞ ¼ 0; ð2:4Þ
T$n ¼ nðE þ u� BÞ: ð2:5Þ
The constraint (2.5) completely determines the velocity u. Indeed, taking the parallel and perpendicular components of (2.5)
leads to
nu? ¼
1
B

b� ðT$n� nEÞ; ð2:6Þ

Trkn� nEk ¼ 0: ð2:7Þ
After dividing by n, we find that the first term at the right-hand side of (2.6) is the diamagnetic drift velocity while the second
one is the E � B drift velocity.

Eq. (2.7) can be recast in the form of an elliptic equation for uk. Indeed, (2.4) can be written
@tnþ $? � ðnu?Þ þrk � ðnukÞ ¼ 0: ð2:8Þ
Applying rk to (2.8), noting that ½rk; @t � ¼ �@tb � r (where ½�; �� denotes the commutator) and inserting (2.7) leads to
�rk rk � ðnukÞ
� �

¼ @t
nEk
T

	 

� @tb � rnþrkð$? � ðnu?ÞÞ: ð2:9Þ
This is a one-dimensional elliptic equation for uk along the magnetic field lines, which is well-posed through the above men-
tioned duality between the parallel gradient and parallel divergence operators. Therefore the parallel component uk can be
computed explicitly through the resolution of this elliptic equation, provided that adequate boundary conditions are given.
The boundary conditions depend on the specific test case under consideration. They will be discussed in the numerical sec-
tion below.

The drift-fluid model consists of Eqs. (2.4), (2.6) and (2.9).
Note that in general, the operator rðr�Þ ‘gradient of divergence’ is not invertible, because curls of arbitrary vector fields

are non-zero elements of the kernel of this operator. However, the operatorrkðrk�Þ involved in the drift-fluid limit (2.9) acts
on the scalar uk and is just the second derivative with respect to the one-dimensional coordinate along the magnetic field
lines. Therefore, the operator rkðrk�Þ, with suitable boundary conditions (such as Dirichlet ones) is invertible.
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2.3. A reformulation of the isothermal Euler–Lorentz model

The scaled Euler–Lorentz model in the drift-fluid asymptotics (2.1), (2.2) is a singularly perturbed problem: in the drift-
fluid limit (2.4), (2.5), the type of certain equations changes. Indeed, in the Euler–Lorentz model the velocity is given by a
time evolution equation of hyperbolic type (2.2), while in the drift-fluid limit, the perpendicular velocity is given by an alge-
braic Eq. (2.6), while the parallel component is found through solving an elliptic type Eq. (2.9). Only the mass conservation
equations (respectively (2.1) and (2.4)) do not change. To find an AP scheme, it is essential to ‘regularize’ the perturbation, i.e.
to reformulate the momentum Eq. (2.2) in the Euler–Lorentz model in such a way that the limit equations for the velocity
(2.6) and (2.9) appear explicitly in the system of equations. The goal of this section is to find such a reformulation.

For the perpendicular component of the momentum, we take the cross-product of (2.2) with b, which leads to
BðneueÞ? � e@t b� ðneueÞ?
� �

¼ �b� ½�T$ne þ neE� þ e �ð@tbÞ � ðneueÞ þ b� $ � ðneue � ueÞð Þ½ �: ð2:10Þ
Formally, when e! 0 in Eq. (2.10), we recover the equation for the perpendicular component of the momentum in the drift-
fluid limit model (2.6).

We now take the scalar product of (2.2) with b
e @t ðneueÞk
� �

� ð@tbÞ � ðneueÞ þ b � $ � ðneue � ueÞð Þ
h i

¼ b � �T$ne þ neE½ �: ð2:11Þ
Since uk cannot be computed explicitly from this equation in the limit e! 0, we are led to reformulate Eq. (2.11). We first
take the time derivative of (2.11) and get
e @2
t ðneueÞk
� �

� @t ð@tbÞ � ðneueÞð Þ þ @t b � ð$ � ðneue � ueÞÞð Þ
h i

¼ @tðneEkÞ � T@tb � $ne � Trk@tne: ð2:12Þ
Now, applying rk to (2.1) (rewritten in the same fashion as (2.8) leads to
e@2
t ðneueÞk
� �

� Trkðrk � ðneueÞkÞ ¼ e@t ð@tbÞ � ðneueÞð Þ � e@t b � $ � ðneue � ueÞð Þð Þ þ @tðneEkÞ � T@tb � $ne

þ Trkðr? � ðneueÞ?Þ: ð2:13Þ
We notice that Eq. (2.9) is the formal limit of Eq. (2.13) when e! 0. Eq. (2.13) is a wave equation for uk associated with the
elliptic operatorrk � ðrkÞ, which is well-posed provided that suitable boundary conditions are given. This wave equation de-
scribes the propagation of disturbances along the magnetic field lines, which propagate at a velocity of order Oðe�1=2Þ. In the
limit e! 0, an equilibrium described by (2.9) is instantaneously reached through waves propagating at infinite speed. Eq.
(2.13) provides an equivalent formulation to (2.2) for uk, but which does not become singular when e! 0.

Therefore, the reformulation of the Euler–Lorentz model consists of Eqs. (2.1), (2.10) and (2.13).
3. An Asymptotic Preserving scheme for the isothermal Euler–Lorentz model in the drift-fluid approximation

3.1. Time semi-discrete scheme

The purpose of this section is to build an AP scheme for the Euler–Lorentz model, i.e. a scheme which is consistent with
the Euler–Lorentz model when e ¼ Oð1Þ and with the drift-fluid limit model when e� 1. In the present context, the AP prop-
erty mostly relies on an appropriate time-discretization. We will investigate this point first. Of course, we have in mind that
time semi-discrete schemes of hyperbolic problems are unstable unless some diffusion is added. In this section, we assume
that the gradient operators are actually approximate operators which encompass the requested numerical diffusion. The
space discretization is discussed in detail in Section 3.2.

Our AP time semi-discrete scheme relies on use of the reformulated Eqs. (2.1), (2.10) and (2.13). However, rather than
looking for a discretization of them, it is more efficient to start from a discretization of the original formulation (2.1),
(2.2) and find a scheme which allows the same reformulation as the continuous problem and the derivation of the discrete
equivalent to (2.1), (2.10), (2.13). In this way, we are guaranteed to find a suitable discretization also in the regime e ¼ Oð1Þ
which we could miss otherwise.

We first introduce some notations. Let Bm be the magnetic field at time tm;Bm its magnitude and bm ¼ Bm=Bm its director.
For a given vector field v , we denote by ðvÞmk and ðvÞm? its parallel and perpendicular components with respect to bm. Sim-
ilarly, we denote by rm

k and rm
k � the parallel gradient and divergence operators respective to this field.

To calculate the solution of the isothermal Euler–Lorentz model in the drift-fluid approximation (2.1), (2.2), we propose
the following time semi-discrete scheme:
nmþ1
e � nm

e
Dt

þ $ � ðneueÞmþ1 ¼ 0; ð3:1Þ

e
ðneueÞmþ1 � ðneueÞm

Dt
þ $ � ðneue � ueÞm

" #
þ Tð$n#

e Þ
mþ1 ¼ nm

e Emþ1 þ ðneueÞmþ1 � Bmþ1: ð3:2Þ
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Here, the quantity ð$n#
e Þmþ1 is given by
ð$n#
e Þ

mþ1 ¼ ð$nm
e Þ

mþ1
? þ ð$nmþ1

e Þmþ1
k bmþ1

: ð3:3Þ
In this scheme, the mass flux, the parallel component of the pressure force and the Lorentz force are evaluated implicitly
while the perpendicular component of the pressure force is evaluated explicitly. We show that these choices permit a refor-
mulation of the scheme into discrete equivalents to Eqs. (2.1), (2.10) and (2.13).

We first investigate the transverse component and take the cross-product of (3.2) with bmþ1. This leads to
ðneueÞmþ1
? � e

Dt
1

Bmþ1 bmþ1 � ðneueÞmþ1
? ¼ � 1

Bmþ1 bmþ1 � e
Dt
ðneueÞm � e$ � ðneue � ueÞm � T$nm

e þ nm
e Emþ1

h i
; ð3:4Þ
which is a discretization of Eq. (2.10), where ð@tbÞ � ðneueÞ 	 ððbmþ1 � bmÞ=DtÞ � ðneueÞm.
We now compute the scalar product of (3.2) with bmþ1. We get
e
Dt
ðneueÞmþ1
� �mþ1

k
þ Trmþ1

k nmþ1
e ¼ bmþ1 � e

Dt
ðneueÞm � e $ � ðneue � ueÞm

� �
þ nm

e Emþ1
h i

; ð3:5Þ
which is a discrete version of Eq. (2.11). Differentiation of the discrete mass conservation equation (3.1) in the parallel direc-
tion gives
rmþ1
k nmþ1

e ¼ rmþ1
k nm

e � Dtrmþ1
k $ � ðneueÞmþ1

� �mþ1

?

	 

� Dtrmþ1

k rmþ1
k � ðneueÞmþ1

� �mþ1

k

	 

; ð3:6Þ
which can be used to eliminate nmþ1
e in favor of ðneueÞmþ1

k in (3.5). This leads to
e
Dt
ðneueÞmþ1
� �mþ1

k
� TDtrmþ1

k rmþ1
k � ðneueÞmþ1

� �mþ1

k

	 

¼ TDtrmþ1

k $ � ðneueÞmþ1
� �mþ1

?

	 

� Trmþ1

k nm
e

þ e
Dt
ðneueÞm � e $ � ðneue � ueÞm

� �
þ nm

e Emþ1
h imþ1

k
: ð3:7Þ
This equation is a one-dimensional elliptic equation (along the magnetic field lines) for the quantity ððneueÞmþ1Þmþ1
k . It is

the discrete counterpart of (2.13) but the link with (2.13) is not fully direct. Eq. (3.7) is rather a discretization of the following
equation:
e@tðneueÞk � Trk
Z t

tm
rk � ðneueÞk

� �
ds

� �
¼ e ð@tbÞ � ðneueÞ � b � $ðneue �ueÞð Þ½ � þ Trk

Z t

tm
$ � ðneueÞ?ds

� �
� b � T$nm

e � neE
� �

;

ð3:8Þ
which is obtained through the reformulation process outlined in Section 2.3 when the mass conservation equation is used in
time-integrated form
ne ¼ nm
e �

Z t

tm
$ � ðneueÞ?
� �

ds�
Z t

tm
rk � ðneueÞk

� �
ds: ð3:9Þ
That (3.8) is equivalent to (2.13) is easy and is left to the reader.
Now, we investigate the limit e! 0 in (3.4, 3.7), leaving Dt unchanged. We get
ðnuÞmþ1
? ¼ � 1

Bmþ1 bmþ1 � �T$nm þ nmEmþ1
h i

; ð3:10Þ

� TDtrmþ1
k rmþ1

k � ðnuÞmþ1
� �mþ1

k

	 

¼ TDtrmþ1

k $ � ðnuÞmþ1
� �mþ1

?

	 

� Trmþ1

k nm þ ½nmEmþ1�mþ1
k : ð3:11Þ
This is the discrete counterpart of the drift-fluid equations (2.6), (2.9). Therefore, the limit e! 0 can be taken in the scheme
(3.1), (3.4), (3.7) and the resulting scheme is consistent with the drift-fluid equations. This shows that the time semi-discrete
scheme (3.1), (3.4), (3.7) provides an Asymptotic Preserving discretization of the Euler–Lorentz model in the drift-fluid limit.
This scheme enables us to compute the solution of the isothermal Euler–Lorentz model for all regimes ranging from e ¼ Oð1Þ
to e� 1 with the same time-step Dt. A conventional scheme would require to let Dt ! 0 simultaneously with e! 0. An AP
scheme is free from this constraint.

As a comparison, let us investigate the conventional time semi-discrete scheme for the Euler–Lorentz model and show
that it cannot be uniformly stable with respect to e and cannot be AP. The conventional time semi-discrete scheme for
the Euler–Lorentz model is the following:
nmþ1
e � nm

e
Dt

þ $ � ðneueÞm ¼ 0; ð3:12Þ

e
ðneueÞmþ1 � ðneueÞm

Dt
þ $ � ðneue � ueÞm

" #
þ T$nm

e ¼ nmþ1
e Emþ1 þ ðneueÞmþ1 � Bmþ1: ð3:13Þ
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The difference with our scheme is that the mass flux and the pressure force are both evaluated explicitly. We note that the
Lorentz force at the right-hand side of (3.13) is still implicit otherwise some obvious instabilities arise in the discretization of
the cyclotron rotation (the u� B term in the Lorentz force). The hyperbolic part of this scheme has obviously a stability con-
straint of the form Dt=

ffiffiffi
e
p
¼ Oð1Þ and can be neither uniformly stable, nor AP. In Section 4.3, simulations are carried out

which confirm that this conventional time semi-discrete scheme is not AP.
We also see that in our AP scheme, we need to evaluate both the mass flux and the parallel component of the pressure

force to get an elliptic equation for ðnuÞk. If the pressure force alone is taken implicitly, this results in an equation for ðnuÞk
which is ill-posed.

3.2. Fully discrete scheme

3.2.1. A two-dimensional case
For the sake of simplicity, we restrict ourselves to a two-dimensional case with a constant in time, uniform in space mag-

netic field lying in the computational plane. Therefore, we assume that the magnetic field is directed along the y-axis and
that the plasma lies in x; y-plane, with translation invariance in the z-direction. However, a possible non-zero plasma velocity
is assumed in the z direction. In these conditions, the isothermal Euler–Lorentz model in the drift-fluid asymptotics (2.1),
(2.2) is written (we now omit the indices e for the sake of simplicity),
@tnþ @xðnuxÞ þ @yðnuyÞ ¼ 0;

e @tðnuxÞ þ @xðnu2
x Þ þ @yðnuxuyÞ

� �
þ T@xn ¼ nEx � nuzBy;

e @tðnuyÞ þ @xðnuxuyÞ þ @yðnu2
yÞ

h i
þ T@yn ¼ nEy;

e @tðnuzÞ þ @xðnuxuzÞ þ @yðnuyuzÞ
� �

¼ nEz þ nuxBy;

ð3:14Þ
Then the time semi-discrete AP scheme for the system (3.14) reads
nmþ1 � nm

Dt
þ @xðnuxÞmþ1 þ @yðnuyÞmþ1 ¼ 0; ð3:15Þ

ðnuxÞmþ1 � e
Dt

1
B
ðnuzÞmþ1 ¼ �1

B
e
Dt
ðnuzÞm � e @xðnuxuzÞm þ @yðnuyuzÞm

� �
þ nmEz

h i
; ð3:16Þ

e
Dt

1
B
ðnuxÞmþ1 þ ðnuzÞmþ1 ¼ �1

B
� e

Dt
ðnuxÞm þ e @xðnu2

x Þ
m þ @yðnuxuyÞm

� �
þ T@xnm � nmEx

h i
; ð3:17Þ

e
Dt
ðnuyÞmþ1 � TDt@y @yðnuyÞmþ1

� �
¼ TDt@y @xðnuxÞmþ1

� �
þ e

Dt
ðnuyÞm � e @xðnuxuyÞm þ @yðnu2

yÞ
m

� �
� T@ynm

h i
þ nmEy;

ð3:18Þ
where B ¼ b � B ¼ By. We now give the full space-time discretization based on the above discussed AP scheme for system
(3.14).

3.2.2. Fully discrete scheme in the two-dimensional case
For numerical purpose, let us consider a Cartesian mesh of the calculation domain ðxi�1=2; xiþ1=2Þ � ðyj�1=2;

yjþ1=2Þ; i; j ¼ 1; . . . ;N. Then Eqs. (3.16)–(3.18) and (3.15) are discretized according to
ðnuxÞmþ1
ij � e

Dt
1
B
ðnuzÞmþ1

ij

¼ �1
B

e
Dt
ðnuzÞmij �

e
Dx
ðnuxuzÞmiþ1=2j � ðnuxuzÞmi�1=2j

� �
þ e

Dy
ðnuyuzÞmijþ1=2 � ðnuyuzÞmij�1=2

� �
þ ðnmEzÞij

� �
; ð3:19Þ

e
Dt

1
B
ðnuzÞmþ1

ij þ ðnuxÞmþ1
ij

� 1
B
� e

Dt
ðnuxÞmij þ

e
Dx

nu2
x þ

T
e

n
	 
m

iþ1=2j

� nu2
x þ

T
e

n
	 
m

i�1=2j

 !
þ e

Dy
ðnuxuyÞmijþ1=2 � ðnuxuyÞmij�1=2

� �
� ðnmExÞij

" #
;

ð3:20Þ

e
Dt
ðnuyÞmþ1

ij � TDtð@2
yðnuyÞmþ1Þij ¼ TDt @yð@xðnuxÞmþ1Þ

� �
ij

þ e
Dt
ðnuyÞmij �

e
Dx
ðnuxuyÞmiþ1=2j � ðnuxuyÞmi�1=2j

� �
� e

Dy
nu2

y þ
T
e

n
	 
m

ijþ1=2
� nu2

y þ
T
e

n
	 
m

ij�1=2

 !" #
þ ðnEyÞmþ1

ij ; ð3:21Þ

nmþ1
ij � nm

ij

Dt
þ 1

Dx
ðnuxÞmþ1

iþ1=2j � ðnuxÞmþ1
i�1=2j

� �
þ 1

Dy
ðnuyÞmþ1

ijþ1=2 � ðnuyÞmþ1
ij�1=2

� �
¼ 0: ð3:22Þ
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Here nmþ1
ij is the density in the cell ðxi�1=2; xiþ1=2Þ � ðyj�1=2; yjþ1=2Þ at the time tmþ1. The quantity ððnuxÞmþ1

ij ; ðnuzÞmþ1
ij Þt is the per-

pendicular part of the momentum while ðnuyÞmþ1
ij is the parallel part of the momentum in the cell

ðxi�1=2; xiþ1=2Þ � ðyj�1=2; yjþ1=2Þ at the time tmþ1. The terms ð�Þiþ1=2j and ð:Þijþ1=2 denote the numerical fluxes at the interfaces
xiþ1=2 and yjþ1=2 of the corresponding quantities, respectively. The second order terms ð@2

yðnuyÞmþ1Þij and ð@yð@xðnuxÞmþ1ÞÞij will
be discussed below.

3.2.3. Discretization of the hyperbolic part
To calculate the numerical fluxes at the interfaces ð�Þiþ1=2j and ð:Þijþ1=2, we use the P0 scheme [12]. To be more precise, let us

consider the interface xiþ1=2 separating data Um
ij ;Um

iþ1j for the corresponding Riemann problem at time tm, where
Um
ij ¼ ðnm

ij ; ðnuÞmij Þ
t
;Um

iþ1j ¼ ðnm
iþ1j; ðnuÞmiþ1jÞ

t
:

Let us denote by bUm
iþ1=2j ¼ ðn̂m

iþ1=2j; cnum
iþ1=2jÞ

t the average state between the states Um
ij ;Um

iþ1j. The average state bUm
iþ1=2j is the Roe

average state [34] given here by following formula:
n̂m
iþ1=2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm

ij nm
iþ1j

q
;

ûm
iþ1=2j ¼

ffiffiffiffiffiffi
nm

ij

q
um

ij þ
ffiffiffiffiffiffiffiffiffiffi
nm

iþ1j

q
um

iþ1jffiffiffiffiffiffi
nm

ij

q
þ

ffiffiffiffiffiffiffiffiffiffi
nm

iþ1j

q

and the momentum of the average state is reconstructed as
Fig. 1. The test-case geometry.

Fig. 2. Schematics of the computational domain.
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cnum
iþ1=2j ¼ n̂m

iþ1=2jû
m
iþ1=2j:
Then the numerical fluxes are given by
ðnuxuzÞmiþ1=2j ¼
ðnuxuzÞmij þ ðnuxuzÞmiþ1j

2
�

am
iþ1=2j

2
ðnuzÞmiþ1j � ðnuzÞmij
� �

; ð3:23Þ

nu2
x þ

T
e

n
	 
m

iþ1=2j
¼
ðnu2

x þ T
e nÞmij þ ðnu2

x þ T
e nÞmiþ1j

2
�

am
iþ1=2j

2
ðnuxÞmiþ1j � ðnuxÞmij
� �

; ð3:24Þ

ðnuxuyÞmiþ1=2j ¼
ðnuxuyÞmij þ ðnuxuyÞmiþ1j

2
�

am
iþ1=2j

2
ðnuyÞmiþ1j � ðnuyÞmij
� �

; ð3:25Þ

ðnuxÞmþ1
iþ1=2j ¼

ðnuxÞmþ1
ij þ ðnuxÞmþ1

iþ1j

2
�

am
iþ1=2j

2
ðnm

iþ1j � nm
ij Þ; ð3:26Þ

ðnuyÞmþ1
iþ1=2j ¼

ðnuyÞmþ1
ij þ ðnuyÞmþ1

iþ1j

2
�

am
iþ1=2j

2
ðnm

iþ1j � nm
ij Þ: ð3:27Þ
Here, the speed am
iþ1=2j is given by
ion parameters for the test-case.

X I II III IV

1 1þ e 1 1þ e 1
0 �1 �1 �1þ e �1þ e
0 1 1þ e 1þ e 1
0 0 e 0 e
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
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0
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momentum nuz
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Comparison of the resolved conventional scheme (crosses), the resolved AP scheme (circles) and the exact drift-fluid limit (vertical bars) at t ¼ 0:1
10�6; density n (top left), x-component of the momentum nux (top right), y-component of the momentum nuy (bottom left), z-component of the
tum nuz (bottom right).
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am
iþ1=2j ¼maxðjam;�

iþ1=2jj; ja
m;þ
iþ1=2jjÞ: ð3:28Þ
with
am;�
iþ1=2j ¼ minðum

xij � ce; ûm
xiþ1=2j � ceÞ;

am;þ
iþ1=2j ¼ maxðûm

xiþ1=2j þ ce; um
xiþ1j þ ceÞ

ð3:29Þ
and ce ¼
ffiffiffiffiffiffiffiffi
T=e

p
standing for the sound speed. The numerical fluxes across interfaces yjþ1=2 are computed similarly.

3.2.4. Discretization of the second order terms
The second order terms are computed with centered spatial discretizations
ð@2
yðnuyÞmþ1Þij ¼

ðnuyÞmþ1
ijþ1 � 2ðnuyÞmþ1

ij þ ðnuyÞmþ1
ij�1

Dy2
and
ð@yð@xðnuxÞmþ1ÞÞij ¼
1
Dy
ð@xðnuxÞmþ1Þijþ1=2 � ð@xðnuxÞmþ1Þij�1=2

h i
;

where
ð@xðnuyÞmþ1Þijþ1=2 ¼
1
2
ð@xðnuxÞmþ1Þijþ1 þ

1
2
ð@xðnuxÞmþ1Þij ¼

1
2
ðnuxÞmþ1

iþ1jþ1 � ðnuxÞmþ1
i�1jþ1

2Dx
þ 1

2
ðnuxÞmþ1

iþ1j � ðnuxÞmþ1
i�1j

2Dx
:

To solve the elliptic equation for ðnuyÞ, suitable boundary conditions need to be specified. In particular, using above discret-
izations Eq. (3.21) can be recast in the form
AXmþ1 ¼ RHSmþ1; ð3:30Þ
Relative difference between the computed solution and the exact drift-fluid limit of the resolved AP scheme at time t ¼ 0:1 for e ¼ 10�6; density n
t), x-component of the momentum nux (top right), y-component of the momentum nuy (bottom left). Absolute difference between the computed

and the exact drift-fluid limit on the z-component of the momentum nuz (bottom right).
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where A ¼ Aðe;Dt;Dy; TÞ is a regular matrix, Xmþ1 ¼ ððnuyÞmþ1
ij Þi;j¼1::N is the vector of the parallel momenta in all the compu-

tational domain and RHSmþ1 ¼ RHSmþ1ðe;Dt;Dx;Dy; T; ðnuxÞm; ðnuyÞm; Em
y Þ is the right-hand side, which is known. The linear

system (3.30) is solved by a Gaussian elimination method with partial pivoting.

3.2.5. Choice of the time-step
As usual, the time-step Dt is chosen such that the CFL condition is satisfied. In 2D geometry, this condition takes the fol-

lowing form:
Table 2
Maximu
compon
on the

e

10�5

10�6

1:5� 1

Table 3
Maximu
of the m
on the

e

10�5

10�6

1:5� 1

Fig. 5.
t ¼ 0:1
the mo
m of relative difference between the computed solution and the exact drift-fluid limit (%) from the resolved conventional scheme on the density n, x-
ent of the momentum nux , y-component of the momentum nuy and absolute difference between the computed solution and the exact drift-fluid limit

z-component of the momentum nuz .

n nux nuy nuz

0:0087 0:00714 0:145 0:0174
8:68� 10�5 0:000274 0:0455 0:00204

0�8 1:29� 10�6 1:25� 10�6 0:00554 3:11� 10�5

m of relative difference between the computed solution and the exact drift-fluid limit (%) from the resolved AP scheme on the density n, x-component
omentum nux , y-component of the momentum nuy , and maximum of absolute difference between the computed solution and the exact drift-fluid limit

z-component of the momentum nuz .

n nux nuy nuz

0:00873 0:0074 0:126 0:017
8:72� 10�5 0:000287 0:0394 0:00207

0�8 1:3� 10�6 1:25� 10�6 0:0048 3:16� 10�5
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Comparison of the non-resolved conventional scheme (crosses), the non-resolved AP scheme (circles) and the exact drift-fluid limit (vertical bars) at
for e ¼ 10�6; density n (top left), x-component of the momentum nux (top right), y-component of the momentum nuy (bottom left), z-component of
mentum nuz (bottom right).
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Dt
1
Dx

max
16i;j6N

am
iþ1=2j þ

1
Dy

max
16i;j6N

am
ijþ1=2

	 

¼ CFL 6 1; ð3:31Þ
where am
iþ1=2j is defined by (3.28). The scheme (3.19)–(3.21) and (3.22) with the time-step algorithm (3.31) will be referred to

as the resolved AP scheme.
When e tends to 0, the sound speed ce ¼

ffiffiffiffiffiffiffiffi
T=e

p
takes large values and the time-step calculated from (3.31) becomes very

small. Due to the AP character of the scheme, we do not need to constrain the time-step to stay of the order of
ffiffiffi
e
p

. Therefore,
the sound speed can be removed from the definition of the velocities used to compute the numerical viscosity in the inter-
facial fluxes. These new velocities are defined as follows:
~am
iþ1=2j ¼max j~am;�

iþ1=2jj; j~a
m;þ
iþ1=2jj

� �
ð3:32Þ
with
~am;�
iþ1=2j ¼minðum

xij; û
m
xiþ1=2jÞ; ~am;þ

iþ1=2j ¼ maxðûm
xiþ1=2j;u

m
xiþ1jÞ ð3:33Þ
and a new CFL condition is introduced
Dt
1
Dx

max
16i;j6N

~am
iþ1=2j þ

1
Dy

max
16i;j6N

~am
ijþ1=2

	 

¼ CFL 6 1: ð3:34Þ
It is important to notice that, with this new expression, the time-step can be chosen independent of e.
The scheme (3.19)–(3.21) and (3.22) where velocities am

iþ1=2j are substituted by ~am
iþ1=2j given by Eq. (3.33) and with the

time-step algorithm (3.34) will be called the non-resolved AP scheme. The numerical tests will show that this choice gives
rise to a correct solution.
Relative difference between the computed solution and the exact drift-fluid limit of the non-resolved conventional scheme at time t ¼ 0:1 for
6; density n (top left), x-component of the momentum nux (top right), y-component of the momentum nuy (bottom left). Absolute difference
n the computed solution and the exact drift-fluid limit on the z-component of the momentum nuz (bottom right).
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4. Numerical tests

4.1. Geometry and test case

Our test-case is two-dimensional: the physical quantities depend only on the coordinates x; y. The magnetic field is as-
sumed to be uniform and directed along the y-axis, i.e. B ¼ ð0;By; 0Þ while the electric field is directed along the z-axis,
E ¼ ð0;0; EzÞ. The test-case geometry is depicted in Fig. 1.

The domain is a square of side 1 as shown in Fig. 2 while the parameters are given in the Table 1: the initial values of
physical quantities are put in the X column while the boundary conditions are given in the columns I, II, III and IV,
accordingly.

For the considered test case, the exact drift-fluid approximation is stationary and uniform in the whole domain, and given
by
Fig. 7.
n (top l
solution
n ¼ 1; nux ¼ �1; nuy ¼ 1; nuz ¼ 0; T ¼ 1: ð4:1Þ

We observe that the initial and boundary data are’well prepared’: they are perturbations of order e of the drift-fluid limit.
Indeed, if ‘unprepared’ initial and boundary data are used, large (of order 1) initial and boundary layers appear in which
the exact solution is significantly different from the drift-fluid limit. In order to correctly capture these initial or boundary
layers, there is no other way than using a time and space resolved scheme in which both the time and space steps are of
order e. However, the goal of an AP scheme is not to capture the initial and boundary layers accurately, but to provide a con-
sistent approximation of the correct drift-fluid limit where it applies, i.e. away from these layers. An accurate verification of
this property requires a test solution which is not polluted by the initial and boundary layers and therefore, the need of well-
prepared initial and boundary conditions. In Section 4.4, for the sake of completeness, we show some numerical results with
unprepared initial and boundary conditions.

4.2. Simulations for e� 1

Here we would like to demonstrate that the AP scheme is consistent with the drift-fluid limit even for large time-steps
compared to e. By contrast, the conventional scheme is shown to be unstable for time-steps larger than e. Three values of the
Relative difference between the computed solution and the exact drift-fluid limit of the non-resolved AP scheme at time t ¼ 0:1 for e ¼ 10�6; density
eft), x-component of the momentum nux (top right), y-component of the momentum nuy (bottom left). Absolute difference between the computed

and the exact drift-fluid limit on the z-component of the momentum nuz (bottom right).
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parameter e are used: e ¼ 10�5, e ¼ 10�6 and e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emachine
p ¼ 1:510�8. For these values, we observe the numerical solution at

times 1, 0.1 and 0.01, respectively. The reason for choosing smaller observation times when e is smaller is due to the increase
of computation time when the time-step resolves e. The CFL number is taken equal to 0.5 for all simulations. A uniform mesh
is used for both the x and y direction with steps Dx ¼ Dy ¼ 0:01.

4.2.1. Resolved case
We first compare the conventional and AP schemes in the resolved case, i.e. when Dt is smaller than e. The results given

by both the conventional and AP schemes are displayed in Fig. 3 for e ¼ 10�6 and compared with the drift-fluid limit. Here, as
Table 4
Maximum of relative difference between the computed solution and the exact drift-fluid limit (%) from the non-resolved conventional scheme on the density n,
x-component of the momentum nux , y-component of the momentum nuy and maximum of absolute difference between the computed solution and the exact
drift-fluid limit on the z-component of the momentum nuz .

e n nux nuy nuz

10�5 75:2 1:98� 103 2:57� 103 6:58� 103

10�6 59:4 1:04� 103 8:69� 104 5:83� 103

1:5� 10�8 58 118 6:44� 105 4:64� 103

Table 5
Maximum of relative difference between the computed solution and the exact drift-fluid limit (%) from the non-resolved AP scheme on the density n, x-
component of the momentum nux , y-component of the momentum nuy , and maximum of absolute difference between the computed solution and the exact
drift-fluid limit on the z-component of the momentum nuz .

e n nux nuy nuz

10�5 0:00104 0:00104 0:00255 0:0447
10�6 9:56� 10�5 6:96� 10�5 0:000245 0:0047
1:5� 10�8 2:75� 10�6 7:12� 10�6 0:000554 0:00389
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Fig. 8. Time-step (log scale) as a function of time for the resolved and non-resolved AP schemes when e ¼ 10�6.

Table 6
Logarithms of the gyro-period s, maximum of time-steps used in the resolved AP scheme (AP) and non-resolved AP scheme (NAP).

e s AP NAP

10�5 �5 �5:09 �2:6
10�6 �6 �5:6 �2:6
1:5� 10�8 �7:83 �6:51 �2:6

Table 7
CPU time (in s) used in the resolved conventional scheme (CONV) and non-resolved AP scheme (NAP) for computing the Euler–Lorentz model at final time tfin

(in s). Ratio of the CPU time of the conventional to the non-resolved AP schemes.

e tfin CONV NAP CONV/NAP

10�5 1:00 4940:32 13:84 357
10�6 0:1 1584:21 1:39 1140
1:510�8 0:01 1149:54 0:17 6762
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well as in the forthcoming pictures, the various physical quantities (i.e. the density n and the three components of the
momentum nu) are shown as functions of x for a given value of y ¼ 0:5. The computed solutions are indistinguishable
and very close to the drift-fluid limit.

In this case e� 1, we want to test the consistency of the scheme with the drift-fluid limit. To do so, we compute the dif-
ference between the numerical solution and the analytical solution (4.1). This is not the numerical error in the conventional
sense, since we do not compare the solution with the exact solution for the same value of e but rather with the exact solution
in the limit e! 0. For this reason, we do not call this quantity, ‘the error’, but rather ‘the difference with the drift-fluid limit’.
We normalize this difference by the exact value of the drift-fluid limit, except for nuz since this value is exactly zero. We
display these quantities as functions of ðx; yÞ for the resolved AP scheme with the value e ¼ 10�6 on Fig. 4. The picture is al-
most the same if we replace the resolved AP scheme by the resolved conventional scheme. For this reason, the latter is
omitted.

The maximal relative difference between the computed solution and the exact drift-fluid limit on the density and mo-
menta for three values of e are given in Table 2 for the resolved conventional scheme and in Table 3 for the resolved AP
scheme. They both show a very good agreement with the drift-fluid limit, which increases as e decreases. This is an expected
result since both the resolved conventional and AP schemes use Dt ¼ Oð

ffiffiffi
e
p
Þ. For this range of time-steps the resolved con-

ventional scheme is only slightly more accurate than the resolved AP scheme.

4.2.2. Unresolved case
We now examine the unresolved situation, where e� Dt. Results obtained by the non-resolved conventional and AP

schemes for e ¼ 10�6 are displayed in Fig. 5. We recall that ‘‘non-resolved” means that the viscosities are computed through
(3.32) and the time-step through (3.34) instead of (3.28), (3.31) in the resolved case.

Clearly, the computed solutions with the non-resolved conventional scheme are unstable, while those calculated with the
non-resolved AP scheme remain stable and consistent with the exact drift-fluid limit. The difference between the computed
solution and the exact drift-fluid limit on the density and momenta (relative difference for n;nux and nuy and absolute dif-
ference for nuz) of the solution for e ¼ 10�6 are given in Fig. 6 for the non-resolved conventional scheme and in Fig. 7 for the
non-resolved AP scheme. They confirm the stability and accuracy of the non-resolved AP scheme and the instability of the
non-resolved conventional scheme.
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In Table 4, the difference between the computed solution and the exact drift-fluid limit for the non-resolved conventional
scheme for the three values of e are given, and similarly for the non-resolved AP scheme in Table 5. Again, the consistency of
the non-resolved AP scheme with the drift-fluid limit on the one hand, and the instability of the non-resolved conventional
scheme on the other hand, are confirmed.

Fig. 8, shows the evolution of the time-step with respect to time in the case e ¼ 10�6 for both the unresolved and resolved
AP schemes. We recall that the time-step is not fixed once for all, but is recomputed at each time-step using the CFL condi-
tion. However, we can see that, in log scale, the time-step remains about constant. The time-step for the unresolved AP
scheme is about 3 decades larger than for the resolved AP scheme. In Table 6, we compare the time-step to the scaled
gyro-period and we notice that it is of the same order of magnitude for the resolved AP scheme, as it should, and it is much
larger (up to 4 decades!) for the unresolved AP scheme.

It is even more interesting to compare the CPU time between the unresolved AP scheme and the conventional scheme.
Indeed, the AP scheme involves more complex computations than the conventional scheme, such as the inversion of linear
systems. It is therefore legitimate to wonder whether this additional work does not completely balance the gain obtained
through the use of larger time-steps. To check this point, the CPU times for the conventional and non-resolved AP schemes
for three values of e are given in Table 7. We see that the gain in CPU time is up to almost 4 decades with the smallest value of
e. The gain scales about like

ffiffiffi
e
p

as it should.
These comparisons show that the proposed AP schemes are very powerful in handling the numerical approximation of

drift-fluid asymptotics.

4.3. Simulations for e ¼ 1

When e ¼ Oð1Þ, the resolved and unresolved AP schemes are almost similar and we want to show that they give similar
results as the resolved conventional scheme. In this way, we show that the AP scheme is as good as the conventional scheme
when e ¼ Oð1Þ. We have already shown in the previous section that the former is much better than the latter when e� 1.

When e ¼ 1, the exact solution is no longer the drift-fluid limit solution. So, we restrict ourselves to a comparison be-
tween the resolved AP scheme and the resolved conventional scheme. This comparison is shown in Fig. 9. We notice that
Fig. 12. Relative difference between the computed solution and the exact drift-fluid limit of the resolved AP scheme at time t ¼ 0:1 for unprepared initial
and boundary conditions e ¼ 10�6 and e0 ¼ 10�2; density n (top left), x-component of the momentum nux (top right), y-component of the momentum nuy

(bottom left). Absolute difference between the computed solution and the exact drift-fluid limit on the z-component of the momentum nuz (bottom right).
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the calculated solutions with the two schemes are indistinguishable. Therefore for e of order of 1, both the resolved AP
scheme and resolved conventional scheme are comparable.

4.4. Simulations for unprepared conditions

For the sake of completeness, we show some numerical results obtained with unprepared boundary conditions. In this
context, our guess is that the drift-fluid limit gives the correct behaviour of the solution after a fast initial transient (if
the initial conditions are not well-prepared) and far enough from the boundaries where a boundary layer can appear (if
the boundary data are not well-prepared). Unfortunately, a rigorous mathematical theory of the drift-fluid limit both in
well-prepared and not well-prepared conditions is still lacking and we do not have any proof to support our guess. However,
the numerical simulations below show that boundary layers actually appear.

For this purpose, we introduce a second parameter e0 ¼ 10�2 and use initial and boundary conditions as given by Table 1
with e replaced by e0. On the other hand, e is kept at the value e ¼ 10�6 in the model (2.1), (2.2) and in the scheme (3.1), (3.2).

On Figs. 10 and 11, we display the values of the density and the three components of the momentum as functions of x
(resp. y) along the line y ¼ 0:5 (resp. x ¼ 0:5) for the resolved and non-resolved AP schemes and for the drift-fluid limit.
The relative differences (absolute difference in the case of nuz) of the solution with the drift-fluid limit are given on
Fig. 12 for the resolved AP scheme and on Fig. 13 for the non-resolved one.

Both the resolved and non-resolved AP schemes exhibit a significant discrepancy with the drift-fluid limit. This discrep-
ancy originates in the appearance of boundary layers which pollute the accuracy of the solution inside the domain. However,
the discrepancy is much larger for the resolved AP scheme than for the non-resolved one. In many instances, the non-re-
solved AP scheme provides a fairly correct solution and its oscillations inside the boundary layers are less pronounced. This
can be attributed to the larger time-steps which provide a stronger relaxation rate towards the drift-fluid limit as well as a
bigger amount of numerical diffusion than the small time-steps used in the resolved-AP schemes.

These results show that the use of the non-resolved AP scheme in the case of non well-prepared boundary data at least
provides a stable if not accurate solution. Additionally, it is expected that a suitable boundary layer analysis will permit to
Fig. 13. Relative difference between the computed solution and the exact drift-fluid limit of the non-resolved AP scheme at time t ¼ 0:1 for unprepared
initial and boundary conditions e ¼ 10�6 and e0 ¼ 10�2; density n (top left), x-component of the momentum nux (top right), y-component of the momentum
nuy (bottom left). Absolute difference between the computed solution and the exact drift-fluid limit on the z-component of the momentum nuz (bottom
right).
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derive corrected boundary conditions which will take into account the influence of the boundary layer. The search for ade-
quate boundary layer correctors will be the subject of future work.
5. Conclusion

The Euler–Lorentz model in the drift-fluid scaling for ion flow has been investigated. First the drift-fluid limit has been
studied and it has been shown that the parallel fluid velocity to the magnetic field is a solution of an elliptic equation. Then,
the full Euler–Lorentz model in the drift-fluid scaling has been investigated. A reformulation of the model has been provided,
which shows that the parallel velocity is the solution of a wave equation with wave velocities tending to infinity as the scal-
ing parameter e goes to zero. This reformulation allows to derive an Asymptotic Preserving scheme for the Euler–Lorentz
model in the drift-fluid scaling, i.e. a scheme which is consistent with the full Euler–Lorentz model when e ¼ Oð1Þ and which
is consistent with its drift-fluid limit when e! 0. The scheme allows to compute the solution of the Euler–Lorentz model
when e� 1 with a time-step independent of e. This property has been demonstrated numerically on a test example. It
has been shown that the scheme is as good as the conventional scheme when e ¼ Oð1Þ and that it provides a stable if not
accurate solution in the case of non well-prepared boundary data.

Forthcoming work will be devoted to the application of the AP scheme in the case of time varying and inhomogeneous
magnetic fields, the coupling of the ion flow to the electron flow and to the electric and magnetic fields as well as to more
rigorous stability analyses of the proposed schemes.
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